

Sustainability Session

Chair: Toby Rapson, ADAS

Speaker: Christina Baxter, ADAS

To create a net zero community to develop solutions for reducing the GHG emissions associated with farming and increasing farm productivity.

- Running since 2021:
 - 88 growers & 609 crops entered
 - Measuring and benchmarking GHG emissions of individual crops & whole rotations
 - Identifying solutions which can reduce emissions while sustaining or increasing productivity
 - Facilitate discussion workshops to share knowledge & solutions

YEN Zero sponsors have been wide ranging across the agriculture industry

Crop types entered into YEN Zero

Emission hotspots – winter wheat

Nitrous oxide from nitrogen fertilisers (inorganic and manures)

Nitrous oxide from crop residues

Non-nitrogen fertiliser manufacture

>65% of total emissions associated with crop nutrition

Fuel use in operations

Seed production

Agri-chemicals

Nitrogen fertiliser manufacture

Average YEN Zero data

Range in crop GHG emissions

Reducing fertiliser input reduces crop yields...

N rate economically optimal for **YIELD**

N rate which minimises **GHG INTENSITY**

Reducing fertiliser input reduces crop yields...

GHG emissions (kg CO₂e t¹) **ILUC** ☐ Soil nitrous oxide ☑ Non-N fertiliser ■ Pesticides □ Seed □ Operations 250 275 300 325 350 50 75 125 150 N fertliser applied (kg ha-1)

N rate economically optimal for **YIELD**

N rate which minimises **GHG INTENSITY including ILUC**

Reducing the manufacture emissions of N fertiliser

Fertiliser manufacture technology is developing to reduce its carbon footprint:

1. Yara Green Ammonia

- Using electrolysis to obtain the Hydrogen for the Haber Bosch process
- Powered using renewable energy, reducing the carbon footprint by 70-90%
- Available only to value chain partnerships, scaling up in the near future

2. OMEX Blue & White Ammonia

- Half of CO₂ produced in UAN production is recovered and sequestered in the ground
- Ammonium sulphate recovered from waste streams (white ammonia)
- Blue and white ammonia combined can halve the manufacture carbon footprint

= 15-20% reduction in the total carbon footprint of a wheat crop

Role of inhibitors in reducing N application emissions

Nitrification inhibitors

- Slows down nitrification, reducing direct N₂O emissions
- UK inventory applies a 44% reduction
- No measured benefit to yield or NUE

 N_2O

= 14% reduction in the total carbon footprint of a wheat crop

Urease inhibitors

- Delays urea hydrolysis and reduces ammonia (NH₃) emissions
- A fraction of volatilised NH₃ is deposited indirectly as N₂O
- Uls reduce indirect N₂O emissions by 70 and 44% for Urea and UAN
- Imp = 9% reduction in the total carbon footprint of a wheat crop

Keeping N in the system

Measuring a field's N balance can indicate if N has been over supplied

- A significant proportion of N left in the field is vulnerable to leaching
- Cover crops can reduce leaching loss by up to 90%

Mix 1: Phacelia &

Oil radish

Mix 2: Japanese oats, Buckwheat &

Keeping N in the system

- Reduced leaching increases soil N supply
 - RB209 recommends increasing SNS by up to 2 indices
- NiCCs project measured a 0.2-1 t/ha yield benefit compared to stubble
 - If chemically destroyed, benefit will be determined by leaching risk
- Additional SFI payment benefits
 - CSAM2: Multi-species winter cover crop £129/ha

Mix 1: Phacelia & Oil radish

Mix 2: Japanese oats, Buckwheat &

Phacelia

Achieving low carbon footprint crops: take home messages

- 1. Nutrition is a large proportion of a crop carbon footprint
- 2. Nutrient efficiency is the first step in improving sustainability
- 3. Productivity is an important piece of the sustainability puzzle
- 4. New technologies and advances are needed for growers to achieve net zero

Thank you to our sponsors

...and to all of you for your participation

yenzero@adas.co.uk

